APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Benjamin Smith

Senior Principal Physicist

Affiliate Associate Professor, Earth and Space Sciences

Email

bsmith@apl.washington.edu

Phone

206-616-9176

Department Affiliation

Polar Science Center

Education

B.S. Physics, University of Chicago, 1997

M.S. Geology & Geophysics, University of Wisconsin - Madison, 1999

Ph.D. Earth & Space Sciences/Geophysics, University of Washington - Seattle, 2005

Publications

2000-present and while at APL-UW

Understanding biases in ICESat-2 data due to subsurface scattering using Airborne Topographic Mapper waveform data

Smith, B.E., M. Studinger, T. Sutterley, Z. Fair, and T. Neumann, "Understanding biases in ICESat-2 data due to subsurface scattering using Airborne Topographic Mapper waveform data," Cryosphere, 19, 975-995, doi:10.5194/tc-19-975-2025, 2025.

More Info

5 Mar 2025

The process of laser light reflecting from surfaces made of scattering materials that do not strongly absorb at the wavelength of the laser can involve reflections from hundreds or thousands of individual grains, which can introduce delays in the time between light entering and leaving the surface. These time-of-flight biases depend on the grain size and density of the medium, and thus they can result in spatially and temporally varying surface height biases estimated from laser altimeters, such as NASA's ICESat-2 (Ice Cloud, and land Elevation Satellite-2) mission. Modeling suggests that ICESat-2 might experience a bias difference as large as 0.1-0.2 m between coarse-grained melting snow and fine-grained wintertime snow (Smith et al., 2018), which exceeds the mission's requirement to measure seasonal height differences to an accuracy better than 0.1 m (Markus et al., 2017). In this study, we investigate these biases using a model of subsurface scattering, laser altimetry measurements from NASA's ATM (Airborne Topographic Mapper) system, and grain size estimates based on optical imagery of the ice sheet. We demonstrate that distortions in the shapes of waveforms measured using ATM are related to the optical grain size of the surface estimated using optical reflectance measurements and show that they can be used to estimate an effective grain radius for the surface. Using this effective grain radius as a proxy for the severity of subsurface scattering, we use our model with grain size estimates from optical imagery to simulate corrections for biases in ICESat-2 data due to subsurface scattering and demonstrate that, on the basis of large-scale averages, the corrections calculated based on the satellite optical imagery match the biases in the data. This work demonstrates that waveform-based altimetry data can measure the optical properties of granular surfaces and that corrections based on optical grain size estimates can correct for subsurface-scattering biases in ICESat-2 data.

Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone

Chartrand, A.M., I.M. Howat, I.R. Joughin, and B.E. Smith, "Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone," Cryosphere, 18, 4971-4992, doi:10.5194/tc-18-4971-2024, 2024.

More Info

6 Nov 2024

Antarctic ice shelves buttress the flow of the ice sheet but are vulnerable to increased basal melting from contact with a warming ocean and increased mass loss from calving due to changing flow patterns. Channels and similar features at the bases of ice shelves have been linked to enhanced basal melting and observed to intersect the grounding zone, where the greatest melt rates are often observed. The ice shelf of Thwaites Glacier is especially vulnerable to basal melt and grounding zone retreat because the glacier has a retrograde bed leading to a deep trough below the grounded ice sheet. We use digital surface models from 2010–2022 to investigate the evolution of its ice-shelf channels, grounding zone position, and the interactions between them. We find that the highest sustained rates of grounding zone retreat (up to 0.7 km yr-1) are associated with high basal melt rates (up to ~250 m yr-1) and are found where ice-shelf channels intersect the grounding zone, especially atop steep local retrograde slopes where subglacial channel discharge is expected. We find no areas with sustained grounding zone advance, although some secular retreat was distal from ice-shelf channels. Pinpointing other locations with similar risk factors could focus assessments of vulnerability to grounding zone retreat.

Quantifying volumetric scattering bias in ICESat-2 and Operation IceBridge altimetry over Greenland firn and aged snow

Fair, Z., M. Flanner, T. Neumann, C. Vuyovich, B. Smith, and A. Schneider, "Quantifying volumetric scattering bias in ICESat-2 and Operation IceBridge altimetry over Greenland firn and aged snow," Earth Space Sci., 11, doi:10.1029/2022EA002479, 2024.

More Info

19 Jun 2024

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission has collected surface elevation measurements for over 5 years. ICESat-2 carries an instrument that emits laser light at 532 nm, and ice and snow absorb weakly at this wavelength. Previous modeling studies found that melting snow could induce significant bias to altimetry signals, but there is no formal assessment on ICESat-2 acquisitions during the melting season. We performed two case studies over the Greenland Ice Sheet to quantify bias in ICESat-2 signals over snow: one to validate Airborne Topographic Mapper (ATM) data against Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) grain sizes, and a second to estimate ICESat-2 bias relative to ATM. We used snow optical grain sizes derived from ATM and AVIRIS-NG to attribute altimetry bias to snowpack properties. For the first case study, the mean and standard deviation of optical grain sizes were 340 ± 65 μm (AVIRIS-NG) and 670 ± 420 μm (ATM). A mean altimetry bias of 4.81 ± 1.76 cm was found for ATM, with larger biases linked to increases in grain size. In the second case study, we found a mean grain size of 910 ± 381 μm and biases of 6.42 ± 1.77 cm (ICESat-2) and 9.82 ± 0.97 cm (ATM). The grain sizes and densities needed to recreate biases with a model are uncommon in nature, so we propose that additional surface attributes must be considered to characterize ICESat-2 bias over snow. The altimetry biases are within the accuracy requirements of the ICESat-2 mission, but we cannot rule out more significant errors over coarse-grained snow.

More Publications

In The News

UW-led project to study ozone, atmospheric layers a finalist for next-generation NASA satellite

UW News, Hannah Hickey

A project led by the University of Washington to better understand our atmosphere's complexity is a finalist for NASA's next generation of Earth-observing satellites. The four teams that reached the proof-of-concept stage will spend the next year refining their proposals. NASA will then review the concept study reports and select two for implementation.

14 May 2024

How ants inspired a new way to measure snow with space lasers

Wired, Matt Simon

Glaciologist Ben Smith comments on a clever new technique to measure fluffy snow on the Earth's surface with the orbiting ICESat-2 lidar instrument.

31 May 2022

Edge of Pine Island Glacier’s ice shelf is ripping apart, causing key Antarctic glacier to gain speed

UW News, Hannah Hickey

For decades, the ice shelf helping to hold back one of the fastest-moving glaciers in Antarctica has gradually thinned. Analysis of satellite images reveals a more dramatic process in recent years: From 2017 to 2020, large icebergs at the ice shelf’s edge broke off, and the glacier sped up.

11 Jun 2021

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close